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Abstract. The recoil proton polarization in the π0 production off the proton with longitudinally polarized
electron beam has been studied as a means to measure quadrupole components in the N to ∆ transition.
On top of the ∆ resonance a high sensitivity to a possible Coulomb quadrupole excitation is found in
parallel kinematics. The ratio of S1+/M1+ multipole amplitudes can be determined from the ratio of
the two in-scattering-plane recoil proton polarization components. Avoiding the absolute measurement of
the polarizations, such a ratio allows small experimental uncertainties. Furthermore, the electron helicity
independent proton polarization component enables the characterization of resonant and non-resonant
pieces.

PACS. 14.20.Gk Baryon resonances with S = 0 – 13.60.Rj Baryon productions – 13.60.Le Meson produc-
tion – 13.40.-f Electromagnetic processes and properties – 13.60.-r Photon and charged-lepton interactions
with hadrons

1 Introduction and motivation

The occurrence of quadrupole components in the N to ∆
transition is within quark models related to d-state con-
figurations in the nucleon and/or the ∆ wavefunction [1,
2]. They originate from details of the inner dynamics of
the composite nucleon like a color hyperfine interaction
in the one-gluon-exchange [3] and, therefore, are of in-
terest for the understanding of the nucleon structure. The
precise measurement of the quadrupole amplitudes is a
long standing experimental problem due to their smallness
compared to the dominating magnetic dipole amplitude.
Only observables carrying interference terms between the
large and the small amplitudes offer sufficient sensitiv-
ity for a reliable determination. Appropriate interferences
are accessible in ∆+-electroproduction experiments off the
proton where the resonance is tagged by its decay into
proton and π0, and either the pion or the recoiling pro-
ton is detected in coincidence with the scattered electron.
Early coincidence experiments at NINA [4] and DESY
[5–7] extracted, with large experimental uncertainties, ra-
tios of Coulomb quadrupole to magnetic dipole strength,
S1+/M1+, around −6% over a range of four-momentum
transfers of 0.3 to 1.56 (GeV/c)2. A fixed-t dispersion-
relation based reanalysis [8] of older data [9–11] yielded
surprisingly large numbers of about −15% at momentum
transfers down to 0.047 (GeV/c)2. A comparatively large
ratio of (−11.0 ± 3.7)% was also obtained in a recent
experiment at ELSA, which measured the azimuthal an-
gular distribution of the high energetic photon from the

π0-decay around the momentum transfer direction [12].
All the experiments extracted the sum of resonant and
non-resonant quadrupole components. A separation was
achieved for the first time in a pion-photoproduction ex-
periment at MAMI. There, a linearly polarized tagged
photon beam was used to determine photon asymmetries
simultaneously for both neutral and charged pion produc-
tion [13], thus enabling the decomposition into isospin 1/2
and 3/2 channels of the electric quadrupole amplitude, E2,
at the photon point.

Further insight into the electric quadrupole admixture
of the N to ∆ transition could be obtained by a precise
determination of the resonant S1+/M1+ ratio as a func-
tion of four-momentum transfer. This would constrain the
spatial distribution of the electric charge in the transition.

Polarized electron beams in combination with polar-
ized proton targets or recoil proton polarimetry open pos-
sibilities for new approaches. The p(e, e′p)π0 reaction has
been examined with regard to a measurement of the lon-
gitudinal quadrupole component in the N to ∆ transition
and the separation of resonant and non-resonant pieces.
The next section recalls briefly the general formalism for
π0-electroproduction and then discusses the possibilities
of recoil polarization measurements, particularly in par-
allel kinematics where the recoiling proton is detected in
momentum transfer direction. Section 3 evaluates impor-
tant experimental aspects and the main conclusions are
summarized in Sect. 4.
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2 The p(e, e′p )π0 reaction

Following the notation of Raskin and Donnelly [14], the
differential cross section for the p(e, e′p)π0 reaction can
be written as(

dσ

dE′ΩeΩcmp

)
= KMott · {(vLRLfi + vTR

T
fi +

+vTTRTTfi + vLTR
LT
fi ) +

+h(vT ′RT
′

fi + vLT ′R
LT ′

fi )}(1)

with

KMott =
Mpmπp

cm
p

8π3W
σMott . (2)

W is the invariant mass of the recoiling hadronic system,
pcmp the proton momentum in the center-of-momentum
frame, and Mp and mπ are the proton and pion rest mass,
respectively. The electron kinematics enters into the fac-
tors vM (M = L, T, TT, LT, T ′, LT ′):

vL =
(
Q2

q 2

)2

·
(
W

Mp

)2

vT =
1
2

(
Q2

q 2

)
+ tan2 ϑe

2

vTT = −1
2

(
Q2

q 2

)
vLT = − 1√

2

(
Q2

q 2

)√(
Q2

q 2

)
+ tan2 ϑe

2
· W
Mp

vT ′ =

√(
Q2

q 2

)
+ tan2 ϑe

2
tan

ϑe
2

vLT ′ = − 1√
2

(
Q2

q 2

)
tan

ϑe
2
· W
Mp

(3)

In the above equations, ϑe is the electron scattering an-
gle, q 2 the square of the three-momentum transfer, Q2 =
4EE′ sin2(ϑe/2) is the negative squared four-momentum
transfer, and h is the longitudinal polarization of the elec-
tron beam. The structure of the hadronic system is con-
tained in the six structure functions RMfi , which implicitly
contain the proton polarization. The dependence on pro-
ton polarization can be made explicit, leading to a total
of 18 structure functions [14,15] in the cross section:(
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Fig. 1. Reference frames for the recoil proton polarization

Πn,l,t = ±1 are the projections of the proton spin in its
rest frame onto the axes n, l, t depicted in Fig.1. The
longitudinal unit vector, l̂, is in the direction of the proton
momentum in the center-of-momentum frame, n̂ = q̂ ×
l̂/ sin θcmp points normal to the reaction plane and t̂ = n̂× l̂
is perpendicular to the proton momentum in the reaction
plane. The connection between the R structure functions
and the W structure functions as defined by Raskin and
Donnelly [14] is given in the appendix.

From the cross section of (4) one gets for the recoil
proton polarization components

σ0Pl = KMott

{
vLTR

l
LT sinΦ+ vTTR

l
TT sin 2Φ

+h
[
vLT ′R

l
LT ′ cosΦ+ vT ′R

l
TT ′
]}

σ0Pt = KMott {vLTRtLT sinΦ+ vTTR
t
TT sin 2Φ

+h [vLT ′RtLT ′ cosΦ+ vT ′R
t
TT ′ ]} (5)

σ0Pn = KMott {vLRnL + vTR
n
T + vLTR

n
LT cosΦ

+ vTTR
n
TT cos 2Φ+ hvLT ′R

n
LT ′ sinΦ} ,

where σ0 represents the proton polarization independent
part of the cross section. The recoil proton polarization
can be split into the electron polarization dependent part
(transferred polarization), P ′{n,l,t}, which is proportional
to h, and an electron polarization independent induced
polarization. From the above equations the transferred po-
larization components are given by:

σ0P
′
t = h ·KMott · [vT ′RtTT ′ + vLT ′R

t
LT ′ cosΦ]

σ0P
′
l = h ·KMott ·

[
vT ′R

l
TT ′ + vLT ′R

l
LT ′ cosΦ

]
(6)

σ0P
′
n = h ·KMott · vLT ′RnLT ′ sinΦ

There are two terms contributing to the polarization com-
ponent P ′t . The first one is independent of Φ and points al-
ways into t direction of the reaction plane reference frame,
which rotates with the out-of-plane angle Φ (see Fig.1).
Viewed from the electron scattering plane, the polariza-
tion related to this term points into opposite directions left
(Φ = 0) and right (Φ = π) of q and therefore vanishes in
the case of parallel kinematics θcmp = 0. Correspondingly,
RtTT ′ carries an implicit sin θcmp -dependence. The second
term depends on cosΦ, like the projection of a polariza-
tion which is fixed in the electron scattering plane onto
the rotating {n, l, t} frame. This part does not vanish in
parallel kinematics.

Similarly, the other components of (6) also contain pro-
jections of a fixed polarization in the electron scattering
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plane. The natural choice for a polarization, P , that is
fixed in the electron scattering plane is the {x, y, z} frame
of Fig.1, which is related to the {n, l, t} system by a simple
rotation:

Px = Pl sin θcmp cosΦ+ Pt cos θcmp cosΦ− Pn sinΦ

Py = Pl sin θcmp sinΦ+ Pt cos θcmp sinΦ+ Pn cosΦ (7)
Pz = Pl cos θcmp − Pt sin θcmp

In the case of parallel kinematics this transformation re-
mains still defined. The angle Φ then plays the role of the
orientation of the transverse polarization, Pt, relative to
the electron scattering plane.

The proton polarization components can be expressed
by the multipole decomposition of the structure functions
according to [14]. Restricting the expansion in the usual
way to s and p waves and retaining only terms with the
dominant M1+ amplitude, one gets for the case of strictly
parallel kinematics with θcmp = 0:

σ0Px = h ·KLT ′ ·
√

2 ·
<
{
S∗0+M1+ + S∗1−M1+ + 4S∗1+M1+

}
(8)

σ0Py = −KLT ·
√

2 ·
=
{
S∗0+M1+ + S∗1−M1+ + 4S∗1+M1+

}
(9)

σ0Pz = h ·KT ′ ·
[
|M1+|2+

<
{

6E1+M
∗
1+ + 2M1+(E∗0+ −M∗1−)

}]
(10)

with

KM = KMott · vM ·
4πW 2

αmπM2
p

; M = LT ′, LT, T ′. (11)

The two in-plane components, Px and Pz, are propor-
tional to the electron helicity, h, and vanish with unpolar-
ized electron beam. Contrary, the component normal to
the electron scattering plane, Py, is independent of h and
thus shows up already with unpolarized beam.

Px carries in parallel kinematics a high sensitivity to
the small longitudinal quadrupole amplitude, S1+, due to
the interference with the large M1+ amplitude. It is, how-
ever, not solely determined by resonant amplitudes, but
receives both resonant and non-resonant contributions.

The induced polarization, Py (9), measures the imagi-
nary part of the same combinations of interference terms
of which Px (8) determines the real part. This offers
the possibility to disentangle resonant and non-resonant
pieces, which will later be discussed in more detail. Pz is
dominated by |M1+|2. Therefore, the ratio of the two in-
plane polarization components, Px/Pz, is directly related
to S1+/M1+. Px and Pz are simultaneously accessible be-
hind a (spin precessing) magnetic system like a proton
spectrometer. In the ratio Px/Pz the absolute values of
both the electron beam polarization and the analyzing
power of the proton polarimeter cancel out, which other-
wise represent major sources of systematic uncertainties.

With real detectors the polarization components are
averaged over finite acceptances around parallel kinemat-
ics. This will be discussed in the next section along with
the influence of the non-leading terms in the s and p wave
approximation.

2.1 Polarization observables in the laboratory frame

The considerations of the preceeding section illustrate the
sensitivity of the recoil proton polarization to the S1+

quadrupole amplitude for parallel kinematics. A real ex-
periment will cover a finite solid angle around the strictly
parallel case. Therefore, in this section the azimuthal aver-
aging of the polarization components P labx,y,z is considered.
For this discussion the polarization (5) is projected from
the center-of-momentum into the laboratory frame [16].
The corresponding transformation is given by the so-called
Wigner-rotation [17]:

P labt = Pt cosϑW + Pl sinϑW
P labl = −Pt sinϑW + Pl cosϑW (12)

P labn = Pn

The Wigner angle, ϑW , is given by

sinϑW =
1 + γ

γcm + γlab
· sin(θcmp − θlabp ), (13)

where the Lorentz factors γ, γcm and γlab are related to
the velocities of the center-of-momentum frame against
the laboratory frame, and of the proton in the cm and lab
frames, respectively. The transformation

P labx =Pl
lab sin θlabp cosΦ+ Pt

lab cos θlabp cosΦ− Pnlab sinΦ

P laby =Pl
lab sin θlabp sinΦ+ Pt

lab cos θlabp sinΦ+ Pn
lab cosΦ

P labz =Pl
lab cos θlabp − Ptlab sin θlabp (14)

projects the polarization as seen in the laboratory reaction
plane (12) onto the {x,y,z}-frame related to the electron
scattering plane. The {x,y,z}-components of (14) are az-
imuthally averaged around the direction of the momentum
transfer, q, which is indicated by the bar in the following
equations. Only those terms with even powers of sinΦ and
cosΦ survive the integration over Φ. Keeping for the sake
of clarity only terms containing the dominant M1+ ampli-
tude, the result is:

(σ0Px)lab = h ·KLT ′ ·
√

2 · <
{
S∗0+M1+

·1
2
[
− 4 sin θcmp (sin θlabp cosϑW + cos θlabp sinϑW )

+ cos θcmp (cos θlabp cosϑW − sin θlabp sinϑW + 1)
]

+

S∗1−M1+ ·
1
2
[
1 + (2− cos2 θcmp )

· (cos θlabp cosϑW − sin θlabp sinϑW )

− sin θcmp cos θcmp (cos θlabp sinϑW + sin θlabp cosϑW )
]

+

S∗1+M1+ ·
1
2
[
4(2 cos2 θcmp − 1)

· (cos θlabp cosϑW − sin θlabp sinϑW )

−10 cos θcmp sin θcmp (cos θlabp sinϑW + sin θlabp cosϑW )

+2(3 cos2 θcmp − 1)
]}

(15)
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Fig. 2. Relative angular weights of the leading multipole terms
of Px and Py, which are the same for both components (see
text), for the kinematics described in Sect. 3.1
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· 1
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+
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− sin θcmp cos θcmp (cos θlabp sinϑW + sin θlabp cosϑW )
]

+

S∗1+M1+ ·
1
2
[
4(2 cos2 θcmp − 1)

· (cos θlabp cosϑW − sin θlabp sinϑW )

−10 cos θcmp sin θcmp (cos θlabp sinϑW + sin θlabp cosϑW )

+2(3 cos2 θcmp − 1)
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(16)

(σ0Pz)lab = h ·KT ′ ·
{
|M1+|2

[
(2− cos2 θcmp )

· (cos θlabp cosϑW − sin θlabp sinϑW )

− sin θcmp cos θcmp (cos θlabp sinϑW + sin θlabp cosϑW )
]

+

<{6M∗1+E1+}
[
(2 cos2 θcmp − 1)

· (cos θlabp cosϑW − sin θlabp sinϑW )

− sin θcmp cos θcmp (cos θlabp sinϑW + sin θlabp cosϑW )
]

+

<{M∗1−M1+}
[
(−1− cos2 θcmp )

· (cos θlabp cosϑW − sin θlabp sinϑW )

− sin θcmp cos θcmp (cos θlabp sinϑW + sin θlabp cosϑW )
]

+

<{E∗0+M1+}
[
2 cos θcmp (cosθlabp cosϑW − sin θlabp sinϑW )

− sin θcmp (cos θlabp sinϑW + sin θlabp cosϑW )
]}

(17)

The angular coefficients of the interference terms are
the same in (15) and (16). They are plotted in Fig.2.
The sensitivity to the S∗1+M1+ interference term decreases
with increasing θcmp . S∗0+M1+ shows practically the same
behaviour, but reduced by a factor 4, while the weight of
S∗1−M1+ is almost constant.

In the limit of parallel kinematics, (15-17) reduce to
(8-10). Keeping also the non-leading terms in the s and p
wave approximation, one arrives at:

(σ0Px)labθ→0 = KLT ′ · h ·
√

2 · <
{

(S∗0+ + S∗1− + 4S∗1+)

· (E0+ + 3E1+ +M1+ −M1−)
}

(18)

(σ0Py)labθ→0 = −KLT ·
√

2 · =
{

(S∗0+ + S∗1− + 4S∗1+)

· (E0+ + 3E1+ +M1+ −M1−)
}

(19)

(σ0Pz)labθ→0 = KT ′ · h ·
[
|E0+|2 + 9|E1+|2 + |M1−|2

+|M1+|2 + <
{

2E∗0+(6E1+ +M1+ −M1−)

+6M∗1+E1+ − 2M∗1−M1+

} ]
. (20)

Thus, in parallel kinematics, Py contains the imaginary
part of the same interference terms as the real part in Px.
This fact can be exploited for a separation of contribu-
tions due to the Delta-resonance from other contributions,
which are caused either by non-resonant π0-production or
by higher nucleon resonances.

2.2 Separation of resonant and non-resonant pieces

The multipole amplitudes of (18-20) are not solely de-
termined by the ∆-resonance, but contain both resonant
and non-resonant pieces. Therefore, in the following, the
multipole combinations of Px and Py ((18) and (19)) are
split into their resonant and non-resonant parts. This is
closely related to the decomposition of the physical π0-
electroproduction amplitudes, Aπ

0

i , into isospin 1
2 and 3

2
channels [18].

Aπ
0

i = A
1/2
i +

2
3
A

3/2
i ; A = M, E, S (21)

As stated by the Watson Final State Theorem [19], all
A

3/2
1+ amplitudes show the almost purely resonant be-

haviour of M3/2
1+ . All other multipoles are considered as

non-resonant.

S∗0+ + S∗1− + 4S∗1+ =[S1/2
0+ + S

1/2
1− + 4S1/2

1+

+
2
3

(S3/2
0+ + S

3/2
1− )]∗ +

8
3

(S3/2
1+ )∗

=[S∗non] + S∗res (22)

E0++3E1++M1+−M1−=[E1/2
0+ + 3E1/2

1+ +M
1/2
1+

−M1/2
1− +

2
3

(E3/2
0+ −M

3/2
1− )]

+
2
3

(3E3/2
1+ +M

3/2
1+ )

= [E,Mnon] + E,Mres. (23)

If, at the position of the ∆ resonance, all terms without
the by far dominating ={M3/2

1+ } are neglected, (18) and
(19) can be written as
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(σ0Px)labθ→0 = KLT ′ · h ·
√

2 · ={S∗non + S∗res}

· 2
3
={M3/2

1+ } (24)

(σ0Py)labθ→0 = −KLT ·
√

2 · <{S∗non} ·
2
3
={M3/2

1+ } (25)

The real parts of resonant amplitudes vanish directly
on top of the resonance and therefore the corresponding
terms do not occur in the above equations. According to
(24) and (25) Px measures the sum of the resonant lon-
gitudinal quadrupole component, S∗res = 8

3 (S3/2
1+ )∗, and

nonresonant contributions, S∗non, whereas Py is solely sen-
sitive to S∗non. In the (hypothetical) case of a single, pure
resonance where all real parts vanish on top of the reso-
nance, Py would thus be identical zero.

However, purely real Born terms S1/2,3/2
0+ , S1/2,3/2

1− , and
S

1/2
1+ result already in a nonvanishing Py. On the other

hand, for real Born terms ={Snon} vanishes, i.e. (24)
yields:

(σ0Px)labθ→0 = KLT ′ ·h·
√

2· 16
9
·={(S3/2

1+ )∗}·={M3/2
1+ } (26)

This means that, within the approximations discussed, Px
contains directly the wanted isospin 3/2 part of the S1+

amplitude.
Non-Born contributions might occur due to either

rescattering processes or higher resonances, like S1/2
1− from

the Roper N(1440). If there were non-Born imaginary
parts contributing, (26) would be more complicated. Such
terms are in principle detectable through Py, because real
and imaginary parts of the amplitudes are related by fixed
phases as requested by Watson’s Final State Theorem.
Therefore imaginary parts in Snon go along with an al-
tered real part <{Snon} as compared to purely real non-
resonant amplitudes.

3 Experimental aspects

The polarization of recoil protons can be measured in a fo-
cal plane polarimeter behind a magnetic spectrometer, like
the proton polarimeter [20] of the A1 collaboration [21]
at MAMI. Such a device measures the azimuthal asym-
metry of protons which were inclusively scattered in a
carbon secondary scatterer. With this process, only the
two polarization components perpendicular to the proton
momentum are accessible. Due to the spin precession in
the spectrometer magnetic system, these two polarization
components measured in the focal plane are linear combi-
nations of all three components at the target, Px, Py, Pz.
Provided a complete understanding of the spin preces-
sion, the measurement of only two focal plane polariza-
tion components is nevertheless sufficient to determine all
three target components, because there is additional infor-
mation from flipping the electron beam helicity: Px and
Pz are odd under helicity reversal, while Py is even (cf.
(8-10)).

The averaging over the azimuthal angle, Φ, which leads
to the expressions discussed in Sect. 2.1, can be easily ac-
complished in the case of parallel kinematics where the
spectrometer sits in the momentum transfer direction.
Here the sensitivity to the longitudinal quadrupole am-
plitude, S1+, is maximum. It is higher than in previously
proposed experiments with distinct measurements left and
right of the momentum transfer direction [22, 23, 24]. The
comparatively high degree of proton polarization in those
experiments is only due to the mixing of the large Pz com-
ponent, which according to (17) contains a |M1+|2 term,
into the considered Pt polarization components at finite
angles θcmp .

In contrast to a non-magnetic polarimeter, where the
longitudinal proton polarization component is inaccessi-
ble, Px and Pz can be measured simultaneously behind
the spectrometer. This allows the mesaurement of the ra-
tio Px/Pz with obvious advantages:
1. The leading term of this ratio is directly
<{S∗1+M1+}/|M1+|2.

2. In the polarization ratio the absolute value of the elec-
tron beam polarization cancels out.

3. The recoil polarizations are determined by polarimeter
asymmetries with a common effective analyzing power.
The polarization ratio is thus also independent of the
absolute value of the polarimeter’s analyzing power.

Therefore such a measurement can be performed without
monitoring the electron beam polarization. The beam po-
larization need even not be constant over time, because
both recoil polarization components are measured truely
simultaneously. The absolute calibration of the effective
polarimeter analyzing power is neither required, since in
the ratio it cancels out, too. A similar polarization-ratio
method was successfully employed in a recent measure-
ment of the neutron electric formfactor [25,26].

The influence of possible non-Born contributions to the
measured ratio can be studied via the induced polariza-
tion, Py. This component is independent of the electron
beam polarization and thus more sensitive to false sys-
tematic asymmetries. For the analysis of Py the absolute
calibration of the proton polarimeter is therefore desirable,
although a ratio measurement Py/Pz could also be imag-
ined. In any case, the beam polarization must be known,
since in the Py/Pz-ratio the polarimeter analyzing power
cancels, but the beam polarization does not.

3.1 Expected proton polarizations in a realistic
experiment

Accounting only for the leading terms in the above ex-
pressions (cf. (8,10)) and neglecting a possible offset due
to imaginary parts of the non-resonant amplitudes, the
recoil proton polarization in parallel kinematics can be
estimated by

Px =
1
σ0
hKMottvLT ′N

2
√

2<{4S∗1+M1+} (27)

Pz =
1
σ0
hKMottvT ′N

2|M1+|2. (28)
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With the proton polarization independent cross section
approximated through

σ0 = KMottvTN
2|M1+|2, (29)

one receives

Px = 4
√

2h
vLT ′

vT

<{S∗1+M1+}
|M1+|2

= −8h
tan(ϑe/2)

1 + 2q 2

Q2 tan2(ϑe/2)
· W
Mp
· <{S

∗
1+M1+}
|M1+|2

= −8 · h · ε · tan(ϑe/2) · W
Mp
· <{S

∗
1+M1+}
|M1+|2

, (30)

Pz = h
vT ′

vT

|M1+|2
|M1+|2

= h
√

1− ε2 . (31)

ε = [1 + (2q 2/Q2) tan2 ϑe
2 ]−1 is the virtual photon’s de-

gree of transverse polarization. Making use of the rela-
tions of appendix D of [15] between CGLN amplitudes
[27] and structure functions, the above relation for Pz
can be shown to hold almost exactly in parallel kine-
matics, i.e. independently of the s- and p-wave approx-
imation. Fixed by kinematical variables only, Pz might
thus be used for calibration checks. Applying the elec-
tron kinematics of the MAMI N -∆ proposal [24], E =
0.855 GeV, W = 1.232 GeV, Q2 = 0.12 (GeV/c)2

, ϑe =
32o, |q| = 0.53 GeV , (30) and (31) yield

Px = −2.2 · h · <{S
∗
1+M1+}
|M1+|2

(32)

Pz = 0.7 · h . (33)

Thus, a quadrupole contribution of the order of −5 %
causes a transverse proton polarization of Px ' 7.6 %
with an electron beam polarization of 70 %, which now
routinely is achieved [28]. The longitudinal proton polar-
ization then is Pz = 49 %.

4 Summary and conclusion

The p(e, e′p)π0 reaction with measurement of the recoil
proton polarization has a large potential towards the pre-
cise determination of the longitudinal quadrupole com-
ponent, S1+, in the N to ∆ transition. In particular in
parallel kinematics, it offers on top of the ∆ resonance a
high sensitivity to the S∗1+M1+ interference term. This is
clearly revealed when the process is discussed in the ap-
propriate {x, y, z} coordinate frame, which is fixed to the
electron scattering plane (see Fig.1). Here the polarization
transfer from the electron takes a simple form and is not
obscured by projections onto rotating reference frames.

The ratio of the recoil proton polarization components,
Px/Pz, is directly related to <{S∗1+M1+}/|M1+|2. If both
components are measured simultaneously after the deflec-
tion in a magnetic spectrometer, the absolute values of

both electron beam polarization and polarimeter analyz-
ing power cancel out. Therefore small experimental un-
certainties can be achieved. The electron beam helicity
independent polarization component, Py, offers the op-
portunity to determine possible non-Born contributions.

I thank R. Beck, J. Friedrich, F. Klein and L. Tiator for many
fruitful discussions. This work was supported by the Deutsche
Forschungsgemeinschaft (SFB201).

Appendix

The relation between the R and W structure functions of
[14] are explicitly:

R̂L = WL(0) R̂nL = WL(n)
R̂TT = WTT (0) R̂nTT = WTT (n)
R̂LT = WTL(0) R̂nLT = WTL(n)
R̂LT ′ = W̃TL′(0) R̂nLT ′ = W̃TL′(n)

R̂T = WT (0) R̂nT = WT (n)
R̂lTT = W̃TT (l) R̂tTT = W̃TT (s)
R̂lLT = W̃TL(l) R̂tLT = W̃TL(s)
R̂lLT ′ = WTL′(l) R̂tLT ′ = WTL′(s)
R̂lTT ′ = WT ′(l) R̂tTT ′ = WT ′(s)

with

R̂M =
RM
N2

and N2 =
4πW 2

αmπM2
N

.
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